text.skipToContent text.skipToNavigation
background-image

Handbuch Data Science Mit Datenanalyse und Machine Learning Wert aus Daten generieren

  • Erscheinungsdatum: 11.06.2019
  • Verlag: Carl Hanser Fachbuchverlag
eBook (PDF)
31,99 €
inkl. gesetzl. MwSt.
Sofort per Download lieferbar

Online verfügbar

Handbuch Data Science

- Umfassender Überblick über die verschiedenen Anwendungsfelder von Data Science - Fallbeispiele aus der Praxis machen die beschriebenen Konzepte greifbar - Vermittelt das notwendige Wissen, um einfache Datenanalyse-Projekte durchzuführen Dieses Buch bietet Ihnen einen Überblick über die verschiedenen Aspekte von Data Science und beschreibt, welchen Wert Sie in einer Big Data-Umgebung aus Daten generieren. So können z. B. Unternehmen auf Basis analysierter Daten schneller Entscheidungen treffen, Kosten reduzieren oder neue Märkte erschließen. Das Buch nähert sich dem Thema Data Science von mehreren Seiten. Zum einen zeigt es, wie Sie Big Data-Plattformen aufbauen und einzelne Tools auf Daten anwenden. Darüber hinaus werden statistisch-mathematische sowie rechtliche Themen angeschnitten. Abgerundet wird das Buch mit Fallbeispielen aus der Praxis, die veranschaulichen wie aus Daten generiertes Wissen unterschiedliche Industrien nachhaltig verändert. Nach der Lektüre des Buches wird der Leser in der Lage sein, einfache Datenanalyse-Projekte durchzuführen. EXTRA: E-Book inside. Systemvoraussetzungen für E-Book inside: Internet-Verbindung und Adobe-Reader oder Ebook-Reader bzw. Adobe Digital Editions. Stefan Papp ist selbstständiger Berater und auf Big Data-Technologien spezialisiert mit denen er Daten aufbereitet und analysiert. Außerdem unterrichtet er an Fachhochschulen, arbeitet als Hadoop-Trainer und schreibt Fachbücher sowie Artikel für mehrere Fachzeitschriften. Wolfgang Weidinger ist Präsident der Vienna Data Science Group (www.vdsg.at), einer gemeinnützigen Vereinigung von und für Data Scientists. Er hat als Data Scientist in den verschiedensten Branchen und Bereichen wie Start-Ups, Finanzwirtschaft, Consulting und Großhandel gearbeitet und dort unter anderem Data-Science-Teams aufgebaut und geleitet. Mario Meir-Huber leitet die Daten-, Analytics- und AI-Strategie innerhalb der A1 Telekom Austria Group. Ein weiterer Schwerpunkt seiner Arbeit sind Advanced Analytics. Bernhard Ortner arbeitet derzeit als Berater im Bereich Big Data- und Cloud-Architekturen. Seine Tätigkeit umfasst dabei die Adaption vorhandener Prozesse um BigData und das Etablieren von Big-Data-Standards und Best Practices. Georg Langs ist Assoz. Professor an der Medizinischen Universität Wien und leitet dort das Computational Imaging Research Lab der Universitätsklinik für Radiologie und Nuklearmedizin. Er ist Mitgründer des Spin-offs contextflow GmbH, das Software für AI-basierte Bildsuche entwickelt. Rania Wazir ist Mathematikerin und arbeitet als Consulting Data Scientist im Bereich Natural Language Processing. Darüber hinaus ist sie Co-Organisatorin der data4good-Initiative des VDSG, die Vorzüge und potenzielle Nachteile der Digitalisierung, u. a. durch Vorträge und Hackathons, einem breiteren Publikum vermittelt.

Produktinformationen

    Format: PDF
    Kopierschutz: watermark
    Seitenzahl: 288
    Erscheinungsdatum: 11.06.2019
    Sprache: Deutsch
    ISBN: 9783446459755
    Verlag: Carl Hanser Fachbuchverlag
Weiterlesen weniger lesen

Handbuch Data Science

2 Grundlagen Datenplattformen
Stefan Papp

"Perfektion ist nicht dann erreicht, wenn es nichts mehr hinzuzufügen gibt,
sondern wenn man nichts mehr weglassen kann." - Antoine de Saint-Exupéry

Ziel von Data-Science-Initiativen in Organisationen ist es, Wert aus Daten zu generieren. Der generierte Nutzen liegt im Regelfall darin mit neuen Erkenntnissen

Kosten zu reduzieren,

schnellere Entscheidungen zu treffen und

neue Märkte zu erschließen.

Bevor mit Machine- und Deep-Learning-Algorithmen aus Daten neue, wertvolle Erkenntnisse gewonnen werden können, müssen die Daten aufbereitet werden. In der Praxis gibt es immer wieder Entscheider in Firmen, die sich erhoffen, dass für diesen ersten Schritt so gut wie kein Aufwand nötig ist, dass mit den Daten alles passt, und dass die neu rekrutierten Data Scientists, die so nebenbei ins sonstige Low-Cost-Gehaltschema des Unternehmens passen, nur mit der Arbeit beginnen müssen. Diese Superhirne - mitunter stellt man sie sich als Geeks mit Hornbrillen vor - schauen sich dann zwei oder drei Tage die Daten an und präsentieren Erkenntnisse, die das Geschäft für immer revolutionieren werden. Das Top-Management wird reich, das Unternehmen floriert und der Data Scientist kriegt - weil er brav war - ein Fahrrad geschenkt, damit er gesund bleibt, wenn er künftig ins Büro radelt.

"Quick Wins", also Situationen, in denen Data Scientists beim erstmaligen Explorieren der Daten bereits merkbare Erkenntnisse liefern können, kommen vor, sind aber äußerst selten. In der Realität haben die meisten Firmen mit konventionellen analytischen Verfahren schon einen Großteil der Innovationsmöglichkeiten abgegrast. Über die Jahre haben sich Analysten bereits den Kopf darüber zerbrochen, wie man Umsätze optimieren und Kosten reduzieren kann. Daher sind durch analytische Auswertungen, die im Regelfall mit BI-Methoden durchgeführt werden, keine wesentlichen Verbesserungen zu erwarten.

Wir werden in den nachfolgenden Kapiteln zeigen, dass es neue Analyse-Methoden gibt, die meist mit dem Begriff "Big Data" zusammengefasst werden. Bisher ignorierte Datenquellen können mithilfe künstlicher Intelligenz erforscht werden. Unternehmen, die sich Wettbewerbsvorteile verschaffen wollen, sollten von diesen Möglichkeiten Gebrauch machen, um am Markt zu bestehen. Wir werden auch darauf eingehen, dass der Erfolg vieler dieser Projekte nicht garantiert ist.

Armand Ruiz beschreibt in einem Artikel das "80/20 Data Science Dilemma" 1 : 80 % der Zeit fließen in die Datenaufbereitung, aber nur 20 % in die Analyse. Diese Zahlen können variieren, im Internet kann man hierzu zahlreiche Studien und Meinungen finden. Ein wesentlicher Faktor für die Dauer der Aufbereitung von Daten ist die Qualität der Quelldaten.

Eine Datenplattform muss neben der Eignung zur erwähnten Aufbereitung der Daten auch noch weitere Anforderungen erfüllen. Sie muss robust sein, damit Daten nicht verloren gehen. Ebenso müssen die Daten vor unbefugtem Zugriff geschützt werden und die Datenplattform muss den Datenschutzrichtlinien entsprechen.

Die Tätigkeit, aus Daten Wert zu generieren, kann in unterschiedlicher Weise betrachtet werden. Die in Kapitel 1 vorgestellten Rollen in einem Team sind eine Möglichkeit Bereiche zu kategorisieren. In diesem Zusammenhang wurde schon ausgeführt, dass die Datenverarbeitung mehrere Phasen durchläuft.

Bild 2.1 Schichten einer Datenplattform

In Bild 2.1 sind die Schichten einer Datenplattform dargestellt. Im Folgenden werden wir das technische Fundament von Data-Science-Projekten beschreiben, und zwar bottom-up von den Hardwaregrundlagen bi

Weiterlesen weniger lesen

Kundenbewertungen