text.skipToContent text.skipToNavigation
background-image

Nebenläufige Programmierung mit Java Konzepte und Programmiermodelle für Multicore-Systeme von Hettel, Jörg (eBook)

  • Erscheinungsdatum: 30.09.2016
  • Verlag: dpunkt
eBook (ePUB)
27,99 €
inkl. gesetzl. MwSt.
Sofort per Download lieferbar

Online verfügbar

Nebenläufige Programmierung mit Java

Damit die Performance-Möglichkeiten moderner Multicore-Rechner effizient genutzt werden, muss die Software dafür entsprechend entworfen und entwickelt werden. Für diese Aufgabe bietet insbesondere Java vielfältige Konzepte an. Das Buch bietet eine fundierte Einführung in die nebenläufige Programmierung mit Java. Der Inhalt gliedert sich dabei in fünf Teile: Im ersten Teil wird das grundlegende Thread-Konzept besprochen und die Koordinierung nebenläufiger Programmflüsse durch rudimentäre Synchronisationsmechanismen erläutert. Im zweiten Teil werden weiterführende Konzepte wie Threadpools, Futures, Atomic-Variablen und Locks vorgestellt. Ergänzende Synchronisationsmechanismen zur Koordinierung mehrerer Threads werden im dritten Teil eingeführt. Teil vier bespricht das ForkJoin-Framework, die Parallel Streams und die Klasse CompletableFuture, mit denen auf einfache Art und Weise nebenläufige Programme erstellt werden können. Im fünften Teil findet der Leser Beispiele für die Anwendung der vorgestellten Konzepte und Klassen. Dabei werden auch das Thread-Konzept von JavaFX und Android sowie das Programmiermodell mit Aktoren vorgestellt. Der Anhang enthält einen Ausblick auf Java 9, das bezüglich des Concurrency-API kleine Neuerungen bringt. Alle Codebeispiele stehen auf der Webseite zum Buch zum Download bereit.

Jörg Hettel studierte Theoretische Physik und promovierte am Institut für Informationsverarbeitung und Kybernetik an der Universität Tübingen. Nach seiner Promotion war er als Berater bei nationalen und internationalen Unternehmen tätig. Er begleitete zahlreiche Firmen bei der Einführung von objektorientierten Technologien und übernahm als Softwarearchitekt Projektverantwortung. Seit 2003 ist er Professor an der Hochschule Kaiserslautern am Standort Zweibrücken. Seine aktuellen Arbeitsgebiete sind u.a. verteilte internetbasierte Transaktionssysteme und die Multicore-Programmierung. Manh Tien Tran studierte Informatik an der TU Braunschweig. Von 1987 bis 1995 war er wissenschaftlicher Mitarbeiter am Institut für Mathematik der Universität Hildesheim, wo er 1995 promovierte. Von 1995 bis 1998 war er als Softwareentwickler bei BOSCH Blaupunkt beschäftigt. 1999 wechselte er zu Harman Becker und war dort bis 2000 für Softwarearchitekturen zuständig. Seit 2000 ist er Professor an der Hochschule Kaiserslautern am Standort Zweibrücken. Seine aktuellen Arbeitsgebiete sind Frameworks, Embedded-Systeme und die Multicore-Programmierung.

Produktinformationen

    Format: ePUB
    Kopierschutz: watermark
    Seitenzahl: 378
    Erscheinungsdatum: 30.09.2016
    Sprache: Deutsch
    ISBN: 9783960880134
    Verlag: dpunkt
    Größe: 24782 kBytes
Weiterlesen weniger lesen

Nebenläufige Programmierung mit Java

1 Einführung

Die meisten Computer können heute verschiedene Anweisungen parallel abarbeiten. Um diese zur Verfügung stehende Ressource auszunutzen, müssen wir sie bei der Softwareentwicklung entsprechend berücksichtigen. Die nebenläufige Programmierung wird deshalb häufiger eingesetzt. Der Umgang und die Koordinierung von Threads gehören heute zum Grundhandwerk eines guten Entwicklers.
1.1 Dimensionen der Parallelität

Bei Softwaresystemen gibt es verschiedene Ebenen, auf denen Parallelisierung eingesetzt werden kann bzw. bereits eingesetzt wird. Grundlegend kann zwischen Parallelität auf der Prozessorebene und der Systemebene unterschieden werden [ 26 , 15 ]. Auf der Prozessorebene lassen sich die drei Bereiche Pipelining (Fließbandverarbeitung), superskalare Ausführung und Vektorisierung für die Parallelisierung identifizieren.

Auf der Systemebene können je nach Prozessoranordnung und Zugriffsart auf gemeinsam benutzte Daten folgende Varianten unterschieden werden:

Bei Multinode-Systemen wird die Aufgabe über verschiedene Rechner hinweg verteilt. Jeder einzelne Knoten (in der Regel ein eigenständiger Rechner) hat seinen eigenen Speicher und Prozessor. Man spricht in diesem Zusammenhang von verteilten Anwendungen.

Bei Multiprocessor-Systemen ist die Anwendung auf verschiedene Prozessoren verteilt, die sich in der Regel alle auf demselben Rechner (Mainboard) befinden und die alle auf denselben Hauptspeicher zugreifen, wobei die Zugriffszeiten nicht einheitlich sind. Jeder Prozessor hat darüber hinaus auch noch verschiedene Cache-Levels. Solche Systeme besitzen häufig eine sogenannte NUMA-Architektur ( Non-Uniform Memory Access ).

Bei Multicore-Systemen befinden sich verschiedene Rechenkerne in einem Prozessor, die sich den Hauptspeicher und zum Teil auch Caches teilen. Der Zugriff auf den Hauptspeicher ist von allen Kernen gleich schnell. Man spricht in diesem Zusammenhang von einer UMA-Architektur ( Uniform Memory Access ).

Neben den hier aufgeführten allgemeinen Unterscheidungsmerkmalen gibt es noch weitere, herstellerspezifische Erweiterungsebenen. Genannt sei hier z. B. das von Intel eingeführte Hyper-Threading. Dabei werden Lücken in der Fließbandverarbeitung mit Befehlen von anderen Prozessen möglichst aufgefüllt.

Hinweis

In dem vorliegenden Buch werden wir uns ausschließlich mit den Konzepten und Programmiermodellen für Multicore- bzw. Multiprocessor-Systeme mit Zugriff auf einen gemeinsam benutzten Hauptspeicher befassen, wobei wir auf die Besonderheiten der NUMA-Architektur nicht eingehen. Bei Java hat man außer der Verwendung der beiden VM-Flags -XX:+UseNUMA und -XX:+UseParallelGC kaum Einfluss auf das Speichermanagement.
1.2 Parallelität und Nebenläufigkeit

Zwei oder mehrere Aktivitäten ( Tasks ) heißen nebenläufig , wenn sie zeitgleich bearbeitet werden können. Dabei ist es unwichtig, ob zuerst der eine und dann der andere ausgeführt wird, ob sie in umgekehrter Reihenfolge oder gleichzeitig erledigt werden. Sie haben keine kausale Abhängigkeit, d.h., das Ergebnis einer Aktivität hat keine Wirkung auf das Ergebnis einer anderen und umgekehrt. Das Abstraktionskonzept für Nebenläufigkeit ist bei Java der Thread , der einem eigenständigen Kontrollfluss entspricht.

Besitzt ein Rechner mehr als eine CPU bzw. mehrere Rechenkerne, kann die Nebenläufigkeit parallel auf Hardwareebene realisiert werden. Dadurch besteht die Möglichkeit, die Abarbeitung eines Programms zu beschleunigen, wenn der zugehörige Kontrollfluss nebenläufige Tasks (Aktivitäten) beinhaltet. Dabei können moderne Hardware und Übersetzer nur bis zu einem gewissen Grad automatisch ermitteln,

Weiterlesen weniger lesen

Kundenbewertungen