text.skipToContent text.skipToNavigation

Mathematical Modeling Applications with GeoGebra von Hall, Jonas (eBook)

  • Erscheinungsdatum: 13.06.2016
  • Verlag: Wiley
eBook (ePUB)

108,99 €1

96,99 €
inkl. gesetzl. MwSt.
Sofort per Download lieferbar

Online verfügbar

Mathematical Modeling

A logical problem-based introduction to the use of GeoGebra for mathematical modeling and problem solving within various areas of mathematics A well-organized guide to mathematical modeling techniques for evaluating and solving problems in the diverse field of mathematics, Mathematical Modeling: Applications with GeoGebra presents a unique approach to software applications in GeoGebra and WolframAlpha. The software is well suited for modeling problems in numerous areas of mathematics including algebra, symbolic algebra, dynamic geometry, three-dimensional geometry, and statistics. Featuring detailed information on how GeoGebra can be used as a guide to mathematical modeling, the book provides comprehensive modeling examples that correspond to different levels of mathematical experience, from simple linear relations to differential equations. Each chapter builds on the previous chapter with practical examples in order to illustrate the mathematical modeling skills necessary for problem solving. Addressing methods for evaluating models including relative error, correlation, square sum of errors, regression, and confidence interval, Mathematical Modeling: Applications with GeoGebra also includes: Over 400 diagrams and 300 GeoGebra examples with practical approaches to mathematical modeling that help the reader develop a full understanding of the content Numerous real-world exercises with solutions to help readers learn mathematical modeling techniques A companion website with GeoGebra constructions and screencasts
Mathematical Modeling: Applications with GeoGebra is ideal for upper-undergraduate and graduate-level courses in mathematical modeling, applied mathematics, modeling and simulation, operations research, and optimization. The book is also an excellent reference for undergraduate and high school instructors in mathematics. Jonas Hall is Head of Mathematics at Rodengymnasiet in Norrtälje, Sweden, where he teaches mathematics and physics. His research interests include problem solving, the aesthetics of mathematics, and teaching with technology. He is a multiple finalist in Kappa, which is a competition for mathematics teachers in Sweden offered by the University of Stockholm. Thomas Lingefjärd, PhD , is Associate Professor of Mathematics Education in the Department of Education at the University of Gothenburg. The author of more than 25 articles and 10 chapter contributions, Dr. Lingefjärd's research interests include mathematical modeling and advanced mathematical thinking.


    Format: ePUB
    Kopierschutz: AdobeDRM
    Seitenzahl: 568
    Erscheinungsdatum: 13.06.2016
    Sprache: Englisch
    ISBN: 9781119102847
    Verlag: Wiley
    Größe: 122383 kBytes
Weiterlesen weniger lesen

Mathematical Modeling



This book is written primarily for teachers of mathematical modeling in upper secondary schools or in high schools. Students in a teacher training program at a university or studying mathematical modeling in an introductory course at the university may also want to explore the possibilities that GeoGebra can afford. The book was conceived from the standpoint of the Swedish curriculum, which regards mathematical modeling competence to be one of seven competencies that should be taught and assessed in upper secondary school.

As a school subject, mathematics is no longer only about calculation. Some parts of mathematics, of course, relate strongly to procedures and counting, but altogether this part of the curriculum has less emphasis today than it used to have. Today, mathematics is treated as a tool, as an aid, as a language, and as logic. The curriculum in many countries is nowadays expressed in terms of competency objectives. The competencies are general and not related to a specific mathematical content. Yet, the competencies are developed in levels by students' processing specific content. The modeling competency is one of these competencies that draw heavily on functions and differential equations.

Mathematical models and other mathematical representations such as diagrams, histograms, functions, graphs, tables, and symbols normally make it easier for abstract mathematical concepts to be understood and for other phenomena to be described in mathematical terms. Educators today are facing a world that is shaped by increasingly complex, dynamic, and powerful systems of information that are meet through various media. Being able to interpret, understand, and work with mathematical models and other complex systems involves important mathematical processes that become discernible and obvious when teaching mathematical modeling.

In mathematics education, as seen from the K-12 perspective, teachers work with different representations in order to help students understand mathematical objects and concepts. Models such as geometrical constructions, graphs of functions, and a variety of diagrams are used to introduce new concepts and to show relationships, dependency, and change. Mathematical models, structures, and constructions are also used in different scientific fields, such as in physics and the social sciences. To be able to construct, interpret, and understand mathematical models is becoming increasingly important for students all over the world.

Our main academic position is that once modeling competency is acquired in the classroom, all other competencies will be addressed automatically. With training in mathematical modeling, instead of always asking "Why are we doing this?" students will find classroom work to be interesting and related to reality, and then concepts, procedures, problem solving, reasoning, communication, and relevance will follow without much effort. If you, the teacher, try to do it the other way around, you may soon discover that in sticking with too many routine calculations you will end up without time to address the modeling and reasoning competencies.

There were some basic considerations that we needed to address in writing this text on mathematical modeling. We could have chosen to only focus on the process of constructing and developing models or instead on the evaluation of already produced mathematical models. We decided to try and address both situations in this book. However, for those of you teaching mathematical modeling in upper secondary school, it may be a good idea to start with existing and well-developed models. Then, as students become familiar with the mathematical modeling concept, they could be started on constructing their own mathematical models.

To place mathematical modeling into a particular branch of mathematics, one could consider it as applied problem solving using data

Weiterlesen weniger lesen